top of page
Search
adliporsire

Semiconductor Material And Device Characterization Free 19



A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. Its conducting properties may be altered in useful ways by introducing impurities ("doping") into the crystal structure. When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.




Semiconductor Material And Device Characterization Free 19



Semiconductor devices can display a range of different useful properties, such as passing current more easily in one direction than the other, showing variable resistance, and having sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping and by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion.


A few of the properties of semiconductor materials were observed throughout the mid-19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics led in turn to the invention of the transistor in 1947[3] and the integrated circuit in 1958.


Semiconductors in their natural state are poor conductors because a current requires the flow of electrons, and semiconductors have their valence bands filled, preventing the entire flow of new electrons. Several developed techniques allow semiconducting materials to behave like conducting materials, such as doping or gating. These modifications have two outcomes: n-type and p-type. These refer to the excess or shortage of electrons, respectively. A balanced number of electrons would cause a current to flow throughout the material.[4]


The most common semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are also known. These include hydrogenated amorphous silicon and mixtures of arsenic, selenium, and tellurium in a variety of proportions. These compounds share with better-known semiconductors the properties of intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance. Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. They are generally used in thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage.


Almost all of today's electronic technology involves the use of semiconductors, with the most important aspect being the integrated circuit (IC), which are found in desktops, laptops, scanners, cell-phones, and other electronic devices. Semiconductors for ICs are mass-produced. To create an ideal semiconducting material, chemical purity is paramount. Any small imperfection can have a drastic effect on how the semiconducting material behaves due to the scale at which the materials are used.[4]


A high degree of crystalline perfection is also required, since faults in the crystal structure (such as dislocations, twins, and stacking faults) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between 100 and 300 mm (3.9 and 11.8 in) in diameter, grown as cylinders and sliced into wafers.


High conductivity in material comes from it having many partially filled states and much state delocalization.Metals are good electrical conductors and have many partially filled states with energies near their Fermi level.Insulators, by contrast, have few partially filled states, their Fermi levels sit within band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across the bandgap, inducing partially filled states in both the band of states beneath the band gap (valence band) and the band of states above the bandgap (conduction band). An (intrinsic) semiconductor has a bandgap that is smaller than that of an insulator and at room temperature, significant numbers of electrons can be excited to cross the band gap.[12]


Some wider-bandgap semiconductor materials are sometimes referred to as semi-insulators. When undoped, these have electrical conductivity nearer to that of electrical insulators, however they can be doped (making them as useful as semiconductors). Semi-insulators find niche applications in micro-electronics, such as substrates for HEMT. An example of a common semi-insulator is gallium arsenide.[13] Some materials, such as titanium dioxide, can even be used as insulating materials for some applications, while being treated as wide-gap semiconductors for other applications.


The partial filling of the states at the bottom of the conduction band can be understood as adding electrons to that band. The electrons do not stay indefinitely (due to the natural thermal recombination) but they can move around for some time. The actual concentration of electrons is typically very dilute, and so (unlike in metals) it is possible to think of the electrons in the conduction band of a semiconductor as a sort of classical ideal gas, where the electrons fly around freely without being subject to the Pauli exclusion principle. In most semiconductors, the conduction bands have a parabolic dispersion relation, and so these electrons respond to forces (electric field, magnetic field, etc.) much as they would in a vacuum, though with a different effective mass.[12] Because the electrons behave like an ideal gas, one may also think about conduction in very simplistic terms such as the Drude model, and introduce concepts such as electron mobility.


A 1 cm3 specimen of a metal or semiconductor has the order of 1022 atoms.[18] In a metal, every atom donates at least one free electron for conduction, thus 1 cm3 of metal contains on the order of 1022 free electrons,[19] whereas a 1 cm3 sample of pure germanium at 20 C contains about 4.21022 atoms, but only 2.51013 free electrons and 2.51013 holes. The addition of 0.001% of arsenic (an impurity) donates an extra 1017 free electrons in the same volume and the electrical conductivity is increased by a factor of 10,000.[20][21]


For example, the pure semiconductor silicon has four valence electrons that bond each silicon atom to its neighbors.[23] In silicon, the most common dopants are group III and group V elements. Group III elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. When an acceptor atom replaces a silicon atom in the crystal, a vacant state (an electron "hole") is created, which can move around the lattice and function as a charge carrier. Group V elements have five valence electrons, which allows them to act as a donor; substitution of these atoms for silicon creates an extra free electron. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material.[24]


The history of the understanding of semiconductors begins with experiments on the electrical properties of materials. The properties of the time-temperature coefficient of resistance, rectification, and light-sensitivity were observed starting in the early 19th century.


Agreement between theoretical predictions (based on developing quantum mechanics) and experimental results was sometimes poor. This was later explained by John Bardeen as due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically based on tiny amounts of impurities.[28] Commercially pure materials of the 1920s containing varying proportions of trace contaminants produced differing experimental results. This spurred the development of improved material refining techniques, culminating in modern semiconductor refineries producing materials with parts-per-trillion purity.


Alexander Graham Bell used the light-sensitive property of selenium to transmit sound over a beam of light in 1880. A working solar cell, of low efficiency, was constructed by Charles Fritts in 1883, using a metal plate coated with selenium and a thin layer of gold; the device became commercially useful in photographic light meters in the 1930s.[28] Point-contact microwave detector rectifiers made of lead sulfide were used by Jagadish Chandra Bose in 1904; the cat's-whisker detector using natural galena or other materials became a common device in the development of radio. However, it was somewhat unpredictable in operation and required manual adjustment for best performance. In 1906, H.J. Round observed light emission when electric current passed through silicon carbide crystals, the principle behind the light-emitting diode. Oleg Losev observed similar light emission in 1922, but at the time the effect had no practical use. Power rectifiers, using copper oxide and selenium, were developed in the 1920s and became commercially important as an alternative to vacuum tube rectifiers.[29][28]


The first semiconductor devices used galena, including German physicist Ferdinand Braun's crystal detector in 1874 and Bengali physicist Jagadish Chandra Bose's radio crystal detector in 1901.[32][33] 2ff7e9595c


1 view0 comments

Recent Posts

See All

Cats and soup apk mod

Cats and Soup APK Mod: um relaxante e divertido jogo de simulação de gato Se você é um amante de gatos e está procurando um jogo que...

Tractor Simulator

Simulador de trator: uma maneira divertida e educativa de experimentar a agricultura Você já imaginou como seria dirigir um trator e...

Comments


bottom of page